Mit einfachsten Mitteln – Plastikrohr, Plastikfolie, Klebeband – ist es Forschern der TU Wien gelungen, eine handelsübliche Digitalkamera zur Spektralkamera umzurüsten, mit der sich das Farbspektrum von Objekten exakt untersuchen lässt:
Pressemitteilung der Technischen Universität Wien:
Forscher der TU Wien bauen Spektral-Kamera
Eine handelsübliche Digitalkamera bauten Forscher zu einer Spezial-Kamera um, mit der man das Farbspektrum von Objekten genau untersuchen kann.
Rot, blau und grün – nur drei Farben kann man mit einer gewöhnlichen Digitalkamera aufnehmen. Für unser Auge genügt das, um einen natürlichen Farbeindruck zu erhalten. In Wirklichkeit setzt sich das Licht, das wir wahrnehmen, aus unendlich vielen Primärfarben unterschiedlicher Wellenlänge zusammen. Um diese Farb-Kombinationen untersuchen zu können, brauchte man bisher komplizierte, teure Spezialapparate. An der TU Wien wurde nun mit ganz einfachen Mitteln ein Gerät entwickelt, das aus einer handelsüblichen Digicam eine Spektral-Kamera macht.
Optisches Gitter spaltet Lichtstrahlen auf
Das Licht, das vom fotografierten Objekt kommt, wird durch eine Linse auf ein optisches Gitter abgebildet. „Das optische Gitter ist in unserem Fall eine Spezialfolie aus Plastik – die gibt es fertig zu kaufen und sie ist leicht zu bearbeiten“, erklärt Ralf Habel vom Institut für Computergraphik und Algorithmen der TU Wien. Diese Folie lenkt die Lichtstrahlen ab, bevor sie in die Kamera gelangen – und zwar je nach Wellenlänge unterschiedlich stark. Dadurch landet das Licht unterschiedlicher Farben an unterschiedlichen Positionen des Kamerasensors. Aus den Sensormessdaten lässt sich dann – auf mathematisch etwas aufwändige Weise – die farbliche Zusammensetzung des fotografierten Objektes berechnen.
Digitalkamera mit dem Spektranalnalyse-Zusatz
Schnitt durch die Spektral-Kamera, mit Strahlengang
Auf die richtige Belichtung kommt es an
Durch die Lichtbrechung am optischen Gitter entstehen am Sensor große Helligkeitsunterschiede. Sowohl ganz dunkle als auch ganz helle Bildbereiche müssen richtig dargestellt werden, damit sich das Farbspektrum richtig zurückrechnen lässt. Deshalb griff man auf die HDR-Technik zurück, die auch in der Standard-Fotografie mittlerweile gerne verwendet wird: Mehrere Fotos vom selben Objekt werden hintereinander mit unterschiedlicher Belichtungszeit aufgenommen. Auf jedem Foto ist jeweils ein bestimmter Bildbereich richtig belichtet. Der Computer setzt daraus ein einziges Bild zusammen, das die gesamte Helligkeitsinformation enthält – mit viel mehr Zwischenschritten zwischen hell und dunkel als das bei einem gewöhnlichen Foto möglich wäre.
„Andere Spektral-Kameras verwenden mechanische Bauteile wie rotierende Spiegel. Das macht diese Geräte teuer und kompliziert“, meint Ralf Habel. Durch die an der TU Wien entwickelte Lösung wurde nun bewiesen, dass es auch einfacher geht – das nötige Computer Know-How vorausgesetzt. „Spektrale Analysen, wie sie durch diese Methode möglich sind, spielen heute in vielen Technologie-Bereichen eine Rolle“, sagt Habel, „etwa um Mineralien zu analysieren, Pflanzen auf ihre Gesundheit zu untersuchen, oder auch bei Satellitenbildern.“
Konkurrenzfähige Auflösung mit Plastikrohr und Klebeband
Die Spektral-Kamera kann auf zwei verschiedene Arten verwendet werden: Entweder wird nur ein enger Schlitz mit einem Pixel Breite analysiert – dann lässt sich für jeden Punkt des Schlitzes ein Farbspektrum mit einer Wellenlängen-Auflösung von 0,8 Nanometern berechnen, oder man nimmt ein volles zweidimensionales Bild (120×120 Pixel) auf und erreicht für jeden Punkt eine spektrale Auflösung von immer noch 5 Nanometern. Damit kann das Gerät jedenfalls mit komplizierteren, teureren Spektral-Analysatoren mithalten. Die verwendete Kamera ist eine Canon EOS 5D, als Linsen wurden handelsübliche Kameraobjektive verwendet. Ein gewöhnliches schwarz ausgekleidetes PVC-Rohr bildet das Gehäuse.
Die einzelnen Bauteile der Spektral-Kamera
Siehe auch: Practical Spectral Photography / TU Wien
(thoMas)
Nicht ganz…
mit einfachsten Mitteln: Ein paar spezielle Linsen und ein Beugungsgitter gehören auch noch dazu.
Grüße aus Franken
Nö
Ne Glitzer-Geschenkpapierfolie oder eine alte CD und ein Schlitz (hier aus schwarzem Klebenband gebastelt) reicht schon. Ist vollkommen wurscht, was es ist — muss nur das Licht aufspalten (Dispersion). Und als “spezielle Linse” tuts eine Taschenlupe. Wenn man unbedingt will, kann man aus ein paar mehr Linsen auch einen Kollimator basteln, was die Auflösung erhöht. Aber das war’s dann auch schon. Lernt eigentlich jeder angehende Physiklehrer, um das mit seinen 7-Klässlern zu basteln — sollte er zumindest. Aber am “Institute of Computer Graphics and Algorithms”, wo die Welt nur aus Bits und Bytes besteht, ist das natürlich eine berichtenswerte Entdeckung.
Es geht viel einfacher
Nämlich so: http://www.photonik.de/index.php?id=11&artid=831&np=2
Da sind die Spektral-Filter direkt auf einem handelsüblichen Sensorchip aufgebracht, wenn der Chip in einer Industriekamera austauschbar ist (manche gibt es ja, wo er nicht eingelötet ist) kann nach dem Austausch die Kamera sofort als Hyperspektralkamera verwenden.
Zum PDF-Download muß man sich registrieren.
OhWeh
Geht für unter 5 Euro
http://www.lehrer-online.de/eigenbau-spektrometer-mit-digicam.php?show_complete_article=1&sid=77234957271126160727730483048390, digitale Taschenflitsche vorausgesetzt.